

Advances in ensemble weather prediction, 2008-2009

Tom Hamill
NOAA Earth System Research Lab
Boulder, Colorado, USA
tom.hamill@noaa.gov

For November 2009 WGNE, Offenbach, Germany

1

Highlights

- Improved stochastic treatments of model errors in ensemble predictions
- Growing maturity of ensemble Kalman filter for improved data assimilation, ensemble initialization.
- Convection-permitting ensembles
- Facilitation of research and model comparisons with new TIGGE data set
- · Reforecasts and ensemble post-processing

(1) Improved stochastic treatments of model errors in ensemble predictions

3

SPPT: Stochastically Perturbed Physical Tendencies (ECMWF TM 598)

$$\forall \ X \in \left\{u, v, T, q\right\}, \quad X_p = \left(1 + r\mu\right) X_c \qquad \mu \in \left(0, 1\right]$$

r is random number, μ used for reducing the perturbation amplitude near surface and in stratosphere. Random numbers generated through spectral pattern generator of Berner et al. (2009).

SPPT, continued.

$$\psi'(\phi,\lambda,t) = \sum_{n=0}^{N} \sum_{m=-n}^{n} \psi'^{m}(t) P_{n}^{m}(\cos\phi) e^{im\lambda}$$

$$\begin{split} \Psi' &= \text{streamfunction forcing; } \lambda = \text{longitude, } \varphi = \text{latitude, } t = \text{time;} \\ m &= \text{zonal wavenumber, } n = \text{total wavenumber,} \\ \Psi'_n{}^m(t) &= \text{the random perturbation for this wavenumber,} \\ P_n{}^m &= \text{Legendre polynomial.} \end{split}$$

$$\psi^{'m}(t+\Delta t) = (1-\alpha)\psi^{'m}(t) + g_n\sqrt{\alpha}\varepsilon(t)$$

 $(1-\alpha)$ = linear autoregressive parameter, $0 < \alpha \le 1$;

g_n = wavenumber-dependent noise amplitude,

 $\varepsilon(t)$ = Gaussian white-noise process with zero mean, variance σ_z^2

5

SPPT: example of time series of r

Figure 1: Example of the pattern r used in the revised scheme; contour interval 0.25; red (blue) contours correspond to positive(negative) values.

Figure 6: Brier score for 24-hour precipitation accumulations for events of 5 mm/d^{-1} . Left: Northern Extra-tropics $(30 \,^{\circ}\text{N}-90 \,^{\circ}\text{N})$, right: Tropics $(30 \,^{\circ}\text{S}-30 \,^{\circ}\text{N})$. The lead times at which the score differences (between an experiment and SP_{BMP}) are statistically significantly different from zero at the 10% level are marked with a dot. Verification against SYNOP data, joint sample of 40 cases.

SPPT: incidence of heavy rain in old and new stochastic tendency schemes

Figure 5: Precipitation frequency ratios between forecasts using tendency perturbations and forecasts without tendency perturbations. Northern Extra-tropics (left), Tropics (right).

old Buizza et al. scheme overpredicted heavy events; this much reduced.

Similar cautionary tale with stochastic convection

• Tompkins and Berner (2008) perturbed humidity inputs to convective parameterization scheme.

Figure 11. Normalized PDF of convective rain rates in an unperturbed forecast (wide gray) and a perturbed (narrow black) forecast from the IN-SUBGRID-FULLPROF case.

Since CP was tuned originally to give acceptable results, introduction of stochasticity produced a change in the distribution of precipitation forecasts, which in this case had undesirable consequences to the forecasts.

Ref: Tompkins and Berner, 2008, JGR, D18101

Spectral Stochastic Backscatter (SPBS)

- Total dissipation rate is computed on all model levels; 3 components:
 - Numerical dissipation, from bi-harmonic diffusion and interpolation error in the semi-Lagrangian scheme.
 - KE dissipation due to orographic gravity wave drag and flow blocking
 - Rate of kinetic energy export from sub-gridscale deep convection into the resolved flow.
- Found that must inject energy not just at truncation limit, but also at sub-synoptic scales of motion.
- Note: FURTHER DETAIL to be ADDED.

(2) Maturity of ensemble Kalman filter for data assimilation, ensemble prediction

- Operational for last several years at Canadian Meteorological Centre.
 - Progress toward 4D-Var/EnKF hybrid.
- Used with high-resolution (T382) global models for NOAA's Hurricane Forecast Improvement Project.
- · Approximations:
 - LETKF used operationally at UK Met Office
 - ET (Ensemble Transform) used operationally at NCEP for medium-range ensemble
 - Experiments with parallel 4D-Vars & perturbed obs at ECMWF.

13

Key issues with EnKFs

- Treatment of model (system) errors in appropriate ways.
- Methods of stabilization/dealing with limited ensemble size introduces consequences.
 - Covariance localization in vertical ill-defined with nonpoint observations such as radiances.
 - As shown, additive noise to account for model error constrains forecast spread growth.
- Best way to hybridize with variational schemes
- Replicating variational QC.

Canonical EnKF equations

$$\mathbf{x}_{i}^{a} = \mathbf{x}_{i}^{b} + \mathbf{K} \left(\mathbf{y}_{i} - H \mathbf{x}_{i}^{b} \right)$$

$$\mathbf{K} = \mathbf{P}^{b} H^{T} \left(H \mathbf{P}^{b} H^{T} + \mathbf{R} \right)^{-1}$$

$$\mathbf{P}^{b} = \left\langle \left[\mathbf{x}_{i}^{b}(t) - \overline{\mathbf{x}}_{i}^{b}(t) \right] \left[\mathbf{x}_{i}^{b}(t) - \overline{\mathbf{x}}_{i}^{b}(t) \right]^{T} \right\rangle$$

$$\mathbf{P}^{a} = \left\langle \left[\mathbf{x}_{i}^{a}(t) - \overline{\mathbf{x}}_{i}^{a}(t) \right] \left[\mathbf{x}_{i}^{a}(t) - \overline{\mathbf{x}}_{i}^{a}(t) \right]^{T} \right\rangle$$

$$\mathbf{x}_{i}^{b}(t+1) = M \mathbf{x}_{i}^{a}(t) + \eta_{i}, \qquad \left\langle \eta_{i} \eta_{i}^{T} \right\rangle = \mathbf{Q}$$

$$\mathbf{\hat{U}}$$

how are we estimating the model-error?

15

Model-error representations in CMC EnKF (Houtekamer et al. July 2009 MWR)

isotropic additive noise dominates in EnKF.

FIG. 7. The rms ensemble spread for the wind speed (m s $^{-1}$) at $\eta=0.258$ for different EnKF configurations. The latitudinal rms values have been computed for the analyses valid between 0000 UTC 1 Jul 2006 and 1200 UTC 10 Jul 2006.

FIG. 8. The rms ensemble spread for the temperature (K) at $\eta=0.842$ for different EnKF configurations. The latitudinal rms values have been computed for the analyses valid between 0000 UTC 1 Jul 2006 and 1200 UTC 10 Jul 2006.

operational = multimodel + SKEB + PTP

isotropic = additive noise to streamfunction and unbalanced T

SKEB = stochastic kinetic energy backscatter

PTP = perturbed physical tendencies (like ECMWF's SPPT)

multi-model = 4 different CPs, 2 LSMs; 2 mixing length; 2 inverse Prandtl numbers

basic = no model error simulation

Conclusions

- Substantial progress in 2008-2009 on:
 - Model error
 - Ensemble initialization through EnKF.
 - Convection-permitting applications.
 - Exploration of multi-model concepts via TIGGE.
 - Amelioration of systematic errors using reforecasts.

